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Abstract

Preferential Bayesian optimization (PBO) is a
framework for optimizing a decision maker’s la-
tent utility function using preference feedback.
This work introduces the expected utility of the
best option (qEUBO) as a novel acquisition func-
tion for PBO. When the decision maker’s re-
sponses are noise-free, we show that qEUBO is
one-step Bayes optimal and thus equivalent to
the popular knowledge gradient acquisition func-
tion. We also show that qEUBO enjoys an ad-
ditive constant approximation guarantee to the
one-step Bayes-optimal policy when the decision
maker’s responses are corrupted by noise. We
provide an extensive evaluation of qEUBO and
demonstrate that it outperforms the state-of-the-
art acquisition functions for PBO across many
settings. Finally, we show that, under sufficient
regularity conditions, qEUBO’s Bayesian simple
regret converges to zero at a rate o(1/n) as the
number of queries, n, goes to infinity. In contrast,
we show that simple regret under qEI, a popular
acquisition function for standard BO often used
for PBO, can fail to converge to zero. Enjoying
superior performance, simple computation, and a
grounded decision-theoretic justification, qEUBO
is a promising acquisition function for PBO.

1 INTRODUCTION

Bayesian optimization (BO) is a framework for global op-
timization of objective functions with expensive or time-
consuming evaluations (Shahriari et al., 2015). BO algo-
rithms have been successful in broad range of applications,
such as sensor set selection (Garnett et al., 2010), hyper-
parameter tuning of machine learning algorithms (Snoek
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et al., 2012), chemical design (Griffiths and Hernández-
Lobato, 2020), and culture media optimization for cellular
agriculture (Cosenza et al., 2022). In many problems, it is
not possible to observe (potentially noisy) objective values
directly. Instead, a decision-maker (DM) provides prefer-
ence feedback, often in the form of pairwise comparisons
between options shown. This arises in applications such
as animation design (Brochu et al., 2010), where a DM is
shown two different images and chooses the one with bet-
ter characteristics (e.g. realism or resemblance to a target
image); and exoeskeleton gait design (Tucker et al., 2020),
where a DM assisted by an exoskeleton walks for a short
period of time using two different gait configurations and
indicates the one that resulted in more comfortable walking.
Preferential Bayesian optimization (PBO) (Brochu et al.,
2010; González et al., 2017), a subframework within BO,
has emerged as a powerful tool for tackling such problems.

As in standard BO, a PBO algorithm consists of two main
components: a probabilistic surrogate model of the DM’s
latent utility function; and an acquisition function (AF),
computed from the probabilistic surrogate model, whose
value at a given set of q alternatives quantifies the benefit
of DM feedback about their preferred alternative in the
set. Several AFs for PBO have been proposed (Brochu
et al., 2010; González et al., 2017; Benavoli et al., 2021;
Siivola et al., 2021; Nguyen et al., 2021). However, most are
derived from heuristic arguments and lack a proper decision-
theoretic or information-theoretic justification. For example,
Brochu et al. (2010) selects the point that maximizes the
posterior mean of the model over points in previous queries
as the first alternative, and the point that maximizes the
expected improvement with respect to the posterior mean
value of the first point as the second alternative. Other works
simply adopt AFs from the standard BO literature (Siivola
et al., 2021), ignoring the fact that preference feedback is
observed rather than direct utility values.

To address the shortcomings of existing approaches, we
study the expected utility of the best option (qEUBO), which
generalizes the EUBO AF proposed by Lin et al. (2022) for
a different problem setting, as a novel AF for PBO with a
proper decision-theoretic justification.
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Contributions Our contributions are as follows:

• We propose qEUBO, an AF for PBO. qEUBO has a
sound decision-theoretic interpretation, is simple to
compute, and exhibits strong empirical performance.

• We show that qEUBO outperforms the state-of-the-
art AFs for PBO in several synthetic and realistic test
problems. Moreover, we show that qEUBO’s closest
competitor performs well in early iterations because it
is similar to qEUBO but its performance degrades as
the number of queries grows.

• We show that, under sufficient regularity conditions,
qEUBO’s Bayesian simple regret converges to zero at
a rate o(1/n) as the number of queries, n, goes to infin-
ity. Moreover, we show there exist problem instances
where qEI, a popular acquisition from the standard
BO setting that is often used in the PBO setting, has
Bayesian simple regret bounded below by a strictly
positive constant.

• We demonstrate significant benefit of asking queries
with more than two alternatives. This contrasts with
previous work by Siivola et al. (2021), which con-
cluded that q > 2 only provides limited performance
improvement.

2 RELATED WORK

Several AFs for PBO have been proposed in the literature.
Most of them are designed via heuristic arguments (Brochu
et al., 2010) or simply reused from the standard BO setting
(Siivola et al., 2021). For example, Brochu et al. (2010)
selects the point that maximizes the posterior mean of the
model over points in previous queries as the first alternative,
and the point that maximizes the expected improvement
with respect to the posterior mean value of the first point as
the second alternative. Nielsen et al. (2014) proposes to use
the point preferred by the user in the previous query as the
first alternative, and the point that maximizes the expected
improvement with respect to this point as the second alter-
native. For q = 2, qEUBO recovers this AF if we force the
first alternative to be equal to the point preferred by the user
in the previous query and optimize only over the second
alternative. González et al. (2017) proposes a pure explo-
ration sampling policy along with two AFs based on the
expected improvement and Thompson sampling AFs that
aim to maximize the soft-Copeland’s score. However, the
computation of this score requires integration over the opti-
mization domain, thus making these algorithms intractable
even for problems of moderate dimension. Siivola et al.
(2021) proposes using batch versions of the expected im-
provement and Thompson sampling AFs from standard BO
for selecting the points in each query. Since utility values
are not observed directly, the batch expected improvement

Figure 1: Fire particle rendering problem from Section 5, in
which a human user is asked which of two animations looks
more like fire (top). Final rendering results based on fitting a
support vector machine model to 100 comparisons between
random particle effects and then optimizing the predicted
latent decision function over animation parameters (bottom).

is adapted by defining the improvement with respect to
the maximum posterior mean value over points in previous
queries, along the lines of the approach followed by Brochu
et al. (2010). Batch Thompson sampling is defined as in the
standard BO setting: each point in the batch is selected as
the point that maximizes an independently drawn sample
from the utility’s posterior distribution. Nguyen et al. (2021)
proposes the multinomial predictive entropy search (MPES)
AF for top-k ranking BO, a slightly more general framework
where the DM selects her most k preferred alternatives in
each query. MPES selects the query that maximizes the in-
formation gain on the utility function’s maximizer through
observing the DM’s feedback. It can be seen as a principled
adaptation of the predictive entropy search (PES) AF for
standard BO (Hernández-Lobato et al., 2014). Like with
PES, the computation of MPES requires approximating an
intractable multi-dimensional integral with respect to the
posterior distribution on the utility function’s maximizer.
This is computationally challenging, especially in problems
of moderate dimension, and inaccurate approximation can
lead to a degraded performance. To our knowledge, the
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Figure 2: log10(optimum value - utility value at the maximizer of the posterior mean) using moderate logistic noise and
q = 2 comparisons per DM query. All algorithms are shown up to 150 queries. qEUBO outperforms other algorithms on all
but one problem.

AFs proposed by Siivola et al. (2021) and Nguyen et al.
(2021) are the only existing ones allowing for queries with
more than two alternatives. Finally, Benavoli et al. (2021)
proposes an AF where the first alternative is the point cho-
sen by the user in the previous query, and the second one
is obtained by maximizing a linear combination between
the logarithm of the probability of improvement and the
information gain; the weight of this linear combination is a
hyperparameter of the algorithm. It also proposes two other
AFs based on Thompson sampling and GP-UCB (Srinivas
et al., 2012).

The above AFs (except MPES) were derived via heuristic
arguments. In contrast, qEUBO is derived following a prin-
cipled decision-theoretic analysis modeling the fact that, in
PBO, observations are comparisons instead of direct utility
values. qEUBO’s approach is consistent with the rigorous
decision-theoretic or information-theoretic analysis used to
derive principled AFs in standard BO. Moreover, unlike
MPES, qEUBO is easy to compute and comes with a con-
vergence guarantee. Finally, qEUBO outperforms MPES
significantly in our empirical evaluation.

qEUBO, restricted to the case q = 2, was first discussed by
Lin et al. (2022) in the context of preference exploration for

multi-attribute BO. In this context, the DM does not express
preferences directly over alternatives but over attributes of
these alternatives, which are assumed to be time-consuming
to evaluate. As a consequence, qEUBO is not used directly
to find alternatives to show to the DM. Instead, it is com-
bined with a probabilistic surrogate model of the mapping
from alternatives to attributes to find hypothetical attribute
vectors over which the DM expresses preferences. Our
work places qEUBO in the context of PBO and extends
its definition to queries with q > 2 alternatives. We also
generalize the analysis of Lin et al. (2022) by showing that
maximizing qEUBO recovers a one-step optimal solution
when responses are noise-free for q > 2. Finally, we provide
a novel convergence analysis for qEUBO.

The connection between qEUBO and the one-step Bayes
optimal policy relates qEUBO to the knowledge gradient
class of sampling policies for sequential data collection,
which are, by definition, one-step Bayes optimal (Frazier
et al., 2008). Knowledge gradient AFs have been widely
used in standard BO (Wu and Frazier, 2016; Wu et al., 2017;
Cakmak et al., 2020) and are known for their superior per-
formance over simpler AFs such as expected improvement
or Thompson sampling, especially when observations are
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noisy or the objective function is highly multi-modal (Wu
and Frazier, 2016; Balandat et al., 2020) or when these
simpler AFs are used in settings where they lack a meaning-
ful interpretation. At the same time, they are typically very
challenging to maximize (Balandat et al., 2020), often result-
ing in high computation times and degraded performance
in problems of moderate dimension. The former is partic-
ularly problematic in the PBO setting where queries are
often required to be generated in real time. Since qEUBO is
significantly simpler to compute, we effectively overcome
the computational burden commonly faced by knowledge
gradient AFs. While this equivalence does not hold any-
more when responses are noisy, we show that qEUBO still
enjoys an additive constant approximation guarantee to the
one-step Bayes optimal policy.

Our work is also related to the literature on dueling-bandits
(Yue et al., 2012; Bengs et al., 2021). Like in our problem
setting, the DM is assumed to express preference feedback
over sets (typically pairs) of alternatives. However, most of
these approaches assume a finite number of alternatives and
often also independence across pairs of alternatives. The
double Thomson sampling strategy for dueling bandits pro-
posed by Wu and Liu (2016) is analogous to the Thompson
sampling AF for PBO proposed by Siivola et al. (2021).

Finally, our work is also related to a broader stream of re-
search on computational preference elicitation (Braziunas,
2006). This work focuses on problems with a finite set of
alternatives, where it suffices to estimate a ranking of the
alternatives, or on estimating the underlying DM’s utility
function within a parametric class of functions. In particular,
our work is closely related to Viappiani and Boutilier (2010),
which derived an analogous result relating optimal recom-
mendation sets with one-step Bayes optimal query sets.
However, Viappiani and Boutilier (2010) proposes using
optimal recommendation sets to query the DM, which dif-
fer from those queries selected by qEUBO when responses
are noisy. As a consequence, our analysis under noisy re-
sponses also focuses on relating qEUBO to the one-step
Bayes optimal policy rather than the policy that selects opti-
mal recommendation sets.

3 PROBLEM SETTING

We denote the space of alternatives or options by X. Suc-
cinctly, our goal is to find the best possible alternative in X
according to the DM’s underlying preferences. These pref-
erences are encoded via a latent utility function, f : X→ R.
We model f through a general Bayesian prior distribution.
In our experiments we use a Gaussian process (GP) prior,
but our derivation and analysis of qEUBO does not make
this assumption and is applicable to more general priors.

At every interaction with the DM, an algorithm selects a
query, X = (x1, . . . , xq) ∈ Xq. The DM then expresses
her most preferred alternative among these q points. This re-

sponse is denoted by r(X) ∈ {1, . . . , q}, where r(X) = i if
xi is the alternative chosen by the DM. The DM’s responses
may be not be always consistent with the underlying utility
function. We model this via a parametric likelihood function
L( · ;λ) : Rq → Rq such that

P(r(X) = i | f(X)) = Li(f(X);λ),

where Li(f(X);λ) is the i-th component of L(f(X);λ)
and λ is estimated along with other parameters of the model.
Our numerical experiments and Theorem 2 assume a logistic
likelihood function of the form

Li(f(X);λ) =
exp(f(xi)/λ)∑q
j=1 exp(f(xj)/λ)

,

for i = 1, . . . , q, where λ ≥ 0 is the noise level parameter.
For λ = 0, the above expression is defined as its right-
hand limit as λ converges to 0. It can be easily shown that
λ = 0 recovers a noise-free response likelihood. Theorem 3
allows for a broader class of likelihood functions. Details
are provided in Section B.

Let D(n) = {(Xm, r(Xm))}nm=1 denote the data collected
after n queries and En denote the conditional expectation
given D(n). Following the decision-theory literature, if we
decide to stop at time N , we will recommend the point
that maximizes the DM’s expected utility given the data
collected so far; i.e., an element of argmaxx∈X EN [f(x)].
Thus, we wish to select the queries X1, . . . , XN so that the
expected utility received by the DM under our recommen-
dation, maxx∈X EN [f(x)], is as large as possible.

4 qEUBO

4.1 qEUBO and the One-Step Bayes Optimal Policy

To motivate our AF, we begin by discussing the one-step
Bayes optimal policy, i.e., the policy that chooses at every
iteration the query that would be optimal if it were the last
one. To this end, we define for an arbitrary query X ∈ Xq ,

Vn(X) = En

[
max
x∈X

En+1[f(x)] | Xn+1 = X

]
.

This is the expected utility received by the DM if one last
additional query Xn+1 = X is performed. The one-step
Bayes optimal policy chooses at every iteration the query
that maximizes Vn.

Since maxx∈X En[f(x)] does not depend on Xn+1, maxi-
mizing Vn is equivalent to maximizing

En

[
max
x∈X

En+1[f(x)]−max
x∈X

En[f(x)] | Xn+1 = X

]
.

The above expression is analogous to the knowledge gradi-
ent AF from standard BO (Frazier et al., 2009; Scott et al.,
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Figure 3: log10(optimum value - utility value at the maximizer of the posterior mean) for q ∈ {2, 4}. Algorithms are shown
up to 150 queries. qEUBO outperforms all other algorithms on all problems. Including more alternatives per query (q = 4)
allows regret to decline more quickly.

2011; Wu and Frazier, 2016). As mentioned earlier, knowl-
edge gradient AFs often outperform simpler AFs. However
they are also very challenging to maximize due to their
nested expectation-maximization structure.

Our main result shows that, when the DM responses are
noise-free, maximizing Vn is equivalent to maximizing a
simpler AF. We define the expected utility of the best option
(qEUBO) AF by

qEUBOn(X) = En [max{f(x1), . . . , f(xq)}] .

Under this definition, the following result holds.

Theorem 1. Suppose the DM’s responses are noise-free.
Then,

argmax
X∈Xq

qEUBOn(X) ⊆ argmax
X∈Xq

Vn(X).

Thus, to find a maximizer of Vn, it suffices to maximize
qEUBOn. This is a significantly simpler task as it does not
require solving a nested stochastic optimization problem.
When the posterior over f is Gaussian or approximated
via a Gaussian distribution (e.g., via a Laplace approxima-
tion), qEUBOn can be efficiently maximized via sample

average approximation (Balandat et al., 2020). This is the
approach we pursue in our experiments. Moreover, if q = 2,
qEUBOn has a closed form expression in terms of the pos-
terior mean and covariance functions (Lin et al., 2022).

When the DM’s responses are noisy, maximizing qEUBOn

is no longer equivalent to maximizing Vn. However, the re-
sult below shows that if noise in the DM’s responses follows
a logistic likelihood, maximizing qEUBOn still recovers a
high-quality query. Formally, we show the following.

Theorem 2. Suppose that the DM’s responses follow the
logistic likelihood function with parameter λ defined above.
Denote Vn as V λn to make its dependence on λ explicit. If
X∗ ∈ argmaxX∈Xq qEUBOn(X), then

V λn (X∗) ≥ max
X∈Xq

V 0
n (X)− λC,

where C = LW ((q − 1)/e), and LW is the Lambert W
function (Corless et al., 1996).

The above two results extend those shown by Lin et al.
(2022) to the logistic likelihood and q > 2. Their proofs can
be found in Section A.
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Figure 4: Comparison of qEUBO (top row) against qEI (bottom row) on a 1-dimensional problem (a quadratic function with
a single maximum at x = 0.5) with q = 2. The first column shows the AF over the two alternatives to be included in the
query after training a preferential GP on 5 randomly generated queries. The second column shows the AF after 5 more
queries, generated by the given AF. The third column shows the AF after 5 more queries generated via that row’s AF.

4.2 qEUBO and qEI

The batch expected improvement AF, commonly known
as qEI, was developed in the context of parallel BO (Gins-
bourger et al., 2008; Wang et al., 2016), where it enjoys a
meaningful decision-theoretic interpretation. It was adapted
to the PBO setting by Siivola et al. (2021). While qEI lacks
a meaningful interpretation in the PBO setting, it often has
good performance. Here, we show that qEUBO is related to
qEI. This connection sheds light on qEI’s strong empirical
performance as an AF for PBO. However, we also show
qEI has significant drawbacks that cause it to have poor
performance in some practical scenarios.

Observe that qEUBOn(X) = En[F (X)] where F : Xq →
R is defined by F (X) = maxi=1,...,q {f(x1), . . . , f(xq)}.
Moreover, if In is any value that does not depend on
X , then maximizing qEUBOn produces the same query
as maximizing En [F (X)− In]. Now observe that, if
In = max {En[f(x)] : x ∈ ∪nm=1Xm}, then qEIn(X) =
En[{F (X) − In}+] recovers the qEI AF proposed by Si-
ivola et al. (2021). From these expressions we observe that,
if F (X) is typically larger than In so that F (X) − In =
{F (X)− In}+, then optimizing qEUBOn(X) should pro-
duce an optimalX similar to the one obtained by optimizing
qEIn(X). This is often the case in early iterations, when
In is small. However, as In becomes larger, we expect this
to occur less frequently, making qEI and qEUBO produce
more different queries. Moreover, when they diverge, qEI
can perform quite poorly, as we will see later.

When the incumbent alternative (the one whose posterior
mean achieves In) has low variance, as typically results
from comparing a good alternative against many other al-
ternatives, then qEI will become increasingly reluctant to
include it or points near it into the next query. In standard
BO, this reluctance is appropriate because re-measuring the
incumbent will not generate an improvement. But, in PBO,
there is great value in comparing an incumbent alternative to
another alternative that might be better — this is a primary
way that we evaluate new alternatives.

This is also consistent with experimental results discussed
later in Section 5 and shown in Figures 2, 3 and 5: qEUBO
and qEI tend to perform similarly early on when we have
asked the DM few queries; later, qEI tends to stall, while
qEUBO continues to reduce its simple regret. This intuition
is also codified in Theorem 4 in the next section, which
shows an example in which qEI fails to be consistent.

To illustrate this further, Figure 4 compares qEUBO and qEI
on a simple 1-dimensional example problem (a quadratic
function with a single maximum at x = 0.5). For each AF,
we first trained a preferential GP model using 5 randomly
chosen comparisons (left column of Figure 4), then gener-
ated 5 more (middle column of Figure 4), and additionally 5
more comparisons (right column of Figure 4) using qEUBO
(top rows) and qEI (bottom rows) respectively. After the
first 5 randomly generated comparisons, the posteriors are
the same, the contours of the two AFs are similar because In
is small, and the two methods make similar queries. After 5
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more queries, generated using each AF, qEUBO has already
learned that 0.5 is a good solution and is comparing this
with other alternatives. In contrast, qEI is choosing not to
compare with 0.5. This pattern continues after 5 additional
queries.

4.3 Convergence Analysis of qEUBO and qEI

We end this section by discussing the convergence prop-
erties of qEUBO and qEI. We show that, under sufficient
regularity conditions, qEUBO’s Bayesian simple regret con-
verges to zero at a rate o(1/n). We also show that there are
problem instances where qEI has Bayesian simple regret
bounded below by a positive constant; in particular, qEI is
not asymptotically consistent.

Our analysis assumes that X is finite, q = 2, and other tech-
nical conditions described in Section B. These conditions
hold in a broad range of settings. For example, they hold
under the logistic likelihood function discussed above if the
prior distribution on f is such that

δ ≤ |f(x)− f(y)| ≤ ∆

almost surely whenever x 6= y for some ∆ ≥ δ > 0. They
also hold for general non-degenerate GP prior distributions
if the likelihood function satisfies

L(f(X);λ) = a

for some fixed a > 1/2 whenever f(x1) 6= f(x2).

Under these conditions, we show the following results. For-
mal statements and proofs can be found in Section B.

Theorem 3. Assume the sequence of queries is chosen by
maximizing qEUBO and the assumptions described in Sec-
tion B hold. Then, E[f(x∗) − f(x̂∗n)] = o(1/n), where
x∗ = argmaxx∈X f(x) and x̂∗n ∈ argmaxx∈X En[f(x)].

Theorem 4. There exists a problem instance (i.e., X and
Bayesian prior distribution over f ) satisfying the assump-
tions described in Section B such that if the sequence
of queries is chosen by maximizing qEI, then E[f(x∗) −
f(x̂∗n)] ≥ R for all n, for a constant R > 0.

The problem instance in which qEI fails to be consistent
has the characteristics previously described in Section 4.2
— the incumbent, i.e., the alternative with the best posterior
mean, also has known value. As a result, qEI is unwilling
to include it in the queries asked. This makes qEI unable
to learn about the value of other alternatives — it can learn
about the relative value of other alternatives with each other,
but not about their value relative to the incumbent.

5 EXPERIMENTS

We compare qEUBO with various state-of-the-art AFs for
PBO from the literature. We consider MPES from Nguyen

et al. (2021), which, as described, is arguably the only exist-
ing PBO AF with a proper justification. We also consider
qEI and batch Thompson sampling (qTS) from Siivola et al.
(2021), which were both shown to have excellent empiri-
cal performance. We also consider qNEI, a version of qEI
that accounts for the uncertainty in latent function values
through Monte Carlo integration over fantasized values Ba-
landat et al. (2020). qEUBO, qEI, and qNEI are optimized
via sample average approximation with multiple restarts
(Balandat et al., 2020). qTS uses approximate sample paths
obtained via 1000 random Fourier features (Rahimi and
Recht, 2007). For reference, we also include the perfor-
mance of random search (Random), which selects queries
uniformly at random over the space of alternatives. All
algorithms use a Gaussian process prior with a constant
mean function and RBF covariance function to model f .
We approximate the posterior distribution over f via the
variational inducing point approach introduced by Hensman
et al. (2015). Our approach is equivalent to the one pursued
by Nguyen et al. (2021) if we take the set of inducing points
equal to the set of all points in the queries asked so far. Our
set of inducing points includes these points in addition to
a small set of quasi-random Sobol points, which improves
performance slightly.

We report results across three synthetic test functions and
three test functions built from real-world data. In con-
trast with most existing papers from the literature, which
limit themselves to low-dimensional problems, we focus
on more challenging problems of moderate dimension
(> 3). Synthetic functions include 6-dimensional Ackley ,
7-dimensional Alpine1, and 6-dimensional Hartmann. Real-
istic problems include a 7-dimensional car cab design prob-
lem (Carcab) (Lin et al., 2022), a 4-dimensional problem in-
volving real-world human preferences over 100 sushi items
(Sushi) (Siivola et al., 2021), and a novel 5-dimensional ani-
mation optimization problem (Animation). Noise is added
to simulate inconsistency in the DM’s responses.

To create our novel animation optimization problem, we
use real human comparison data from a real-world particle
effect rendering animation based on the publicly available
demo in the AEPsych package (Owen et al., 2021). In this
setting, a human user is asked to compare two rendered ani-
mations of particles side by side and to determine which one
looks more like fire (Figure 1, top). The particle animation
is parameterized by 5 parameters. We collected 100 such
pairwise comparisons from human users with random parti-
cle animation parameters. We then confirmed that by fitting
a support vector machine model on this data and optimizing,
we are able to obtain a realistic fire-like particle effect. A
screenshot of the resulting animation shown in the bottom of
Figure 1. We then use this fitted model as the ground-truth
test function to perform simulation.

In all problems, a first stage of interaction with the DM is
performed using 4d queries chosen uniformly at random
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Problem/Acquisition function qNEI MPES qTS qEI qEUBO

Ackley 8.1 24.8 6.5 6.3 12.4
Alpine1 11.4 16.4 6.4 8.9 11.3
Hartmann 8.7 15.3 7.1 6.0 8.3
Animation 9.4 13.5 8.6 7.4 8.2
Carcab 7.2 12.7 6.9 7.1 7.2
Sushi 8.9 23.9 9.5 5.9 7.5

Table 1: Average runtimes in seconds across all test problems. MPES is consistently the slowest algorithm, followed by
qNEI. MPES is slow because it requires approximating an intractable integral involving the posterior distribution on the
utility function’s maximizer. qTS and qEI are the fastest algorithms, followed closely by qEUBO.
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Figure 5: Comparison between qEUBO and qEI on the
7-dimensional Alpine1 function seeded with many compar-
isons between a good solution and other randomly chosen
ones. This setting is similar to Theorem 4. When we have a
reasonably good status quo solution whose value is known
with high precision, qEI is unable to significantly reduce its
simple regret while qEUBO steadily learns.

over Xq, where d is the input dimension of the problem.
After this initial stage, each algorithm was used to select
150 additional queries sequentially. Figures 2 and 3 show
the mean of the log simple regret, plus and minus 1.96
times the standard deviation divided by the square root of
the number of replications, as a function of the number of
queries. Here, simple regret is is defined as the maximum
objective value minus the objective value at the maximizer
of the posterior mean. We average over 100 replications
for the Animation and Sushi problems and 50 replications
for the other problems. Figure 2 shows results for q = 2
for all algorithms. Figure 3 shows results for both q = 2
and q = 4 for MPES, qTS, qEI, and qEUBO; we only
focus on the best-performing algorithms to reduce visual
clutter. All problems use moderate levels of Gumbel noise,

consistent with the use of a logistic likelihood. qEUBO
outperforms all other AFs in all problems except Carcab for
q = 2, followed by qEI and then by qTS. In Section C we
also include results for q = 4, q = 6, and varying levels
of noise. In these results, qEUBO continues to consistently
outperform competitor methods.

Figure 3 shows that including more alternatives in each
query (q = 4 vs. q = 2) allows qEUBO to achieve a
given simple regret using fewer queries. Other AFs also
benefit from including more alternatives in each query, but
qEUBO seems to benefit the most. This contrasts with
Siivola et al. (2021), which found only a marginal benefit of
using larger values of q. At the same time, our results are
consistent with those from Mikkola et al. (2020), which also
observed significant benefits from using queries with larger
information content. Our work provides complementary
evidence because each query in Mikkola et al. (2020) is
equivalent to an infinite number of pairwise comparisons,
while our queries use only q − 1 comparisons. Results in
Section C suggest that there is also a benefit in going from
q = 4 to q = 6 for all algorithms considered there, including
qEUBO, but that this benefit is smaller and less consistent
than that of going from q = 2 to q = 4.

Table 1 shows the AF optimization walltime per iteration
for each AF and each test problem, averaged over all the it-
erations. qEI is competitive in terms of its computational re-
quirements, often outperforming all the other AFs. qEUBO
is fast enough to support interactive learning applications,
such as those for psychophysics experimentation (Owen
et al., 2021) and animation (Brochu et al., 2010), despite
the challenging dimensionality of the experiments presented
here. To better support interactive applications, one can
begin optimizing qEUBO to generate the next query while
the user is considering the current query. This can be done
by initiating qEUBO for all possible user responses to the
current query.

Figure 5 compares qEI and qEUBO on an example prob-
lem similar to the one analyzed in Theorem 4 in which
qEI fails to be consistent. The objective function is the 7-
dimensional Alpine1 function. The initial data set contains
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several queries constituted by pairs where the first point is
a known high-utility point close to the optimum, and the
second point is drawn uniformly at random over the domain.
After these comparisons, the value of this point has rela-
tively low variance and has a posterior mean relatively high
compared to the posterior mean elsewhere. This mimics a
setting common in practice where we have an in-use status
quo solution that is reasonably good, has well-understood
performance because it is currently in use, and on which
we would like to improve. In this setting, the incumbent
value In has a reasonably high value relative to the poste-
rior mean elsewhere and the variance of the latent utility
near the incumbent solution is small. As a result, qEI does
not include the incumbent solution or nearby values in DM
queries, hampering its ability to learn. Consequently, qEI’s
simple regret stalls while qEUBO, on the other hand, makes
steady progress as the number of queries grows.

The code used to conduct our empirical evalu-
ation can be found at https://github.com/
facebookresearch/qEUBO.

6 CONCLUSION

This work introduces the expected utility of the best op-
tion (qEUBO) acquisition function for preferential Bayesian
optimization. qEUBO is simple to compute, has a sound
decision-theoretic interpretation, and exhibits a strong em-
pirical performance across a broad range of problems. We
also draw a connection between qEUBO and its closest
competitor, qEI, showing that qEI tends to perform well in
early iterations because it is similar to qEUBO but its perfor-
mance degrades as the number of queries grows or when the
variance around the optimum is very small. Furthermore,
we show that qEUBO’s Bayesian simple regret converges
to zero at a rate o(1/n) as the number of queries, n, goes to
infinity. In contrast, we show that simple regret under qEI
can fail to converge to zero. Finally, we demonstrate the
substantial benefit of performing queries with more than two
alternatives, in contrast with previous work, which found
only a marginal benefit. Future directions include studying
qEUBO’s performance under other probabilistic models and
extending qEUBO to more structured problem settings such
as contextual preferential Bayesian optimization.
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A PROOFS OF THEOREMS 1 AND 2

A.1 Proof of Theorem 1

Theorem A.1 (Theorem 1). Suppose the DM’s responses are noise-free. Then, argmaxX∈Xq qEUBOn(X) ⊆
argmaxX∈Xq Vn(X).

Proof. For any given X ∈ Xq and each i ∈ {1, . . . , q} let x+(X, i) ∈ argmaxx∈X En [f(x) | (X, i)] and define X+(X) =
(x+(X, 1), . . . , x+(X, q)). We claim that

Vn(X) ≤ qEUBOn(X+(X)). (1)

To see this, note that

Vn(X) =

q∑
i=1

Pn(r(X) = i)En[f(x+(X, i))|(X, i)]

≤
q∑
i=1

Pn(r(X) = i)En

[
max
i=1,...,q

f(x+(X, i))|(X, i)
]

= En[ max
i=1,...,q

f(x+(X, i))}]

= qEUBOn(X+(X)),

as claimed.

On the other hand, for any given X ∈ Xq we have

En[f(xr(X)) | (X, r(X))] ≤ max
x∈X

En[f(x) | (X, r(X))].

Since f(xr(X)) = maxi=1,...,q f(xi), taking expectations over r(X) on both sides we obtain

qEUBOn(X) ≤ Vn(X). (2)

Now, building on the arguments above, let X∗ ∈ argmaxX∈Xq qEUBOn(X) and suppose for the sake of contradiction that
X∗ /∈ argmaxX∈Xq Vn(X). Then, there exists X̃ ∈ Xq such that Vn(X̃) > Vn(X∗). By the arguments above we have

qEUBOn(X+(X̃)) ≥ Vn(X̃)

> Vn(X∗)

≥ qEUBOn(X∗)

≥ qEUBOn(X+(X̃)).

The first inequality follows from (1). The second inequality is due to our supposition for contradiction. The third inequality
is due to (2). Finally, the fourth inequality holds since X∗ ∈ argmaxX∈Xq qEUBOn(X).

This contradiction concludes the proof.

A.2 Proof of Theorem 2

Before proving Theorem2, we introduce notation and prove several lemmas.

Throughout this section we assume that

P(r(X) = i | f(X)) =
exp(f(xi)/λ)∑q
j=1 exp(f(xj)/λ)

,

for i = 1, . . . , q. We also define the functions

Uλn (X) = En[f(xr(X))],



qEUBO: A Decision-Theoretic Acquisition Function for Preferential Bayesian Optimization

and

V λn (X) = En

[
max
x∈X

En[f(x) | (X, r(X))]

]
.

We note that V λn makes the dependence of Vn on λ explicit. On the other hand, Uλn generalizes the definition of qEUBOn,
which is obtained as a special case for λ = 0.

Our analysis is similar to the one pursued by Viappiani and Boutilier (2010) to relate optimal recommendation sets and
optimal query sets. In particular, we leverage the following result, which can be deduced from the proof of Theorem 3 in the
supplement of Viappiani and Boutilier (2010).

Lemma A.1. For any s1, . . . , sq ∈ R,

q∑
i=1

exp(si/λ)∑q
j=1 exp(sj/λ)

si ≥ max
i=1,...,q

si − λC,

where C = LW ((q − 1)/e), where LW is the Lambert W function (Corless et al., 1996).

Proof. We may assume without loss of generality that maxi=1,...,q si = sq. Let ti = (sq − si)/λ for i = 1, . . . , q − 1.
After some algebra, we see that the inequality we want to show is equivalent to

q−1∑
i=1

ti exp(−ti)
1 +

∑q−1
j=1 exp(−tj)

≤ C.

Thus, it suffices to show that the function η : [0,∞)q−1 → R given by

η(t1, . . . , tq−1) =

q−1∑
i=1

ti exp(−ti)
1 +

∑q−1
j=1 exp(−tj)

is bounded above by C. We refer the reader to the supplement of Viappiani and Boutilier (2010) for a proof.

Lemma A.2. Uλn (X) ≥ qEUBOn(X)− λC for all X ∈ Xq .

Proof. Note that

E[f(xr(X)) | f(X)] =

q∑
i=1

exp(f(xi)/λ)∑q
j=1 exp(f(xj)/λ)

f(xi).

Thus, Lemma A.1 implies that
E[f(xr(X)) | f(X)] ≥ max

i=1,...,q
f(xi)− λC.

Taking expectations over both sides of the inequality yields the desired result.

Lemma A.3. V λn (X) ≥ Uλn (X) for all X ∈ Xq .

Proof. Observe that

V λn (X) = En

[
max
x∈X

E[f(x) | (X, r(X))]

]
≥ En

[
E[f(xr(X)) | (X, r(X))]

]
= En[f(xr(X))]

= Uλn (X),

where the penultimate equality follows by the law of iterated expectation.

Theorem A.2 (Theorem 2). If X∗ ∈ argmaxX∈Xq qEUBOn(X), then V λn (X∗) ≥ maxX∈Xq V 0
n (X)− λC.
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Proof. Let X∗∗ ∈ argmaxX∈Xq V 0
n (X). We have the following chain of inequalities:

V λn (X∗) ≥ Uλn (X∗)

≥ U0
n(X∗)− λC

= qEUBOn(X∗)− λC
≥ qEUBOn(X+(X∗∗))− λC
≥ V 0

n (X∗∗)− λC
= max
X∈Xq

V 0
n (X)− λC.

The first inequality follows from Lemma A.3. The second inequality follows from Lemma A.2. The third line (first equality)
follows from the definition of U0

n. The fourth line (third inequality) follows from the definition of X∗. The fifth line (fourth
inequality) can be obtained as in the proof of Theorem 1. Finally, the last line (second equality) follows from the definition
of X∗∗.

B PROOFS OF THEOREMS 3 AND 4

In this section, we prove Theorems 3 and 4. In contrast with other sections, here we use super indices with parentheses to
denote the iteration number, n. We denote the query presented to the used by X(n), and the corresponding user’s response
by r(X(n)). We shall sometimes denote this response more compactly by r(n). We let D(n) = {(X(m), r(m))}nm=1 denote
the data collected up to time n. Similarly, we denote the conditional expectation given D(n) by E(n).

Recall that Theorems 3 and 4 assume that X is finite and and q = 2. We make these assumptions throughout this section
without stating them explicitly. We also assume that E[maxx∈X |f(x)|] < ∞, which guarantees that all expectations
involved in our analysis are finite.

The statement of Theorems 3 and 4 rely on the following assumptions (called Assumptions 1-3 respectively):

1. P(f(x) = f(y)) = 0 for any x, y ∈ X with x 6= y.

2. There exists a > 1/2 such that P(r(X) ∈ argmaxi=1,...,2 f(xi) | f(X)) ≥ a for any X = (x1, x2) ∈ X2 with
x1 6= x2 almost surely under the prior on f .

3. There exist ∆ ≥ δ > 0 such that for any D(n) and any x, y ∈ X (potentially depending on D(n)),

δP(n)(f(x) > f(y)) ≤ E(n)[{f(x)− f(y)}+] ≤ ∆P(n)(f(x) > f(y))

almost surely under the prior on f .

Before we begin with the proofs of Theorems 3 and 4, we show that Assumptions 1-3 hold in two general settings. This is
summarized in the following two lemmas.

First, we show that if the difference in utilities between items is bounded below (away from 0) and above almost surely
under the prior, then Assumptions 1-3 hold for a broad class of likelihoods for the query response.

Lemma B.1. Suppose that there exist ∆ ≥ δ > 0 such that δ ≤ |f(x) − f(y)| ≤ ∆ almost surely whenever x 6= y.
Additionally, suppose that the likelihood function Li(f(X);λ) = P(r(X) = i | f(X)) is bounded below by a > 1/2 when
δ ≤ |f(x)− f(y)|. Then, Assumptions 1-3 hold.

Proof. Since δ ≤ f(x)− f(y)| almost surely whenever x 6= y, Assumption 1 holds trivially. The assumed lower bound on
the likelihood implies Assumption 2.

Now we show that Assumption 3 holds. Observe that

{f(x)− f(y)}+ = (f(x)− f(y))1{f(x) > f(y)}
≥ δ1{f(x) > f(y)}
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almost surely under the prior (and thus under the posterior at time n) on f . Thus,

E(n)
[
{f(x)− f(y)}+

]
≥ E(n) [δ1(f(x) > f(y)]

= δP(n)(f(x) > f(y)).

We can show similarly that
E(n)

[
{f(x)− f(y)}+

]
< ∆P(n)(f(x) > f(y)).

This lemma’s lower bound on the likelihood is satisfied for the logistic likelihood, the probit likelihood, or for any other
likelihood in which P(r(X) = 1 | f(X)) is a strictly increasing function of f(x1) − f(x2) and equal to 1/2 when
f(x1) = f(x2).

Our next result considers the situation where the difference in item utilities is not bounded. In this situation, it shows that
Assumptions 1-3 hold provided the DM’s response likelihood satisfies a stronger condition than that assumed by Lemma B.1:
the DM’s responses are correct with constant probability greater than 1/2 whenever the items in the query have non-identical
utility value. This result applies to general non-degenerate GP prior distributions; i.e., for GP prior distributions with a
positive definite covariance function.
Lemma B.2. Suppose that Assumption 1 holds and there exists a > 1/2 such that P(r(X) = argmaxi=1,...,2 f(xi) |
f(X)) = a whenever f(x1) 6= f(x2). Then, Assumption 3 holds.

Proof. We first make a fundamental observation. For a permutation π : {1, . . . , |X|} → {1, . . . , |X|}, let Aπ denote the
event {f(xπ(1)) < · · · < f(xπ(|X|))}. We note that the distribution of f given D(n) and Aπ coincides with the distribution
of f given Aπ . This observation may be surprising at first glance, but it has a very intuitive interpretation. Since the DM’s
responses depend exclusively on the relative order of the utility values, they only provide ordinal information about the
utility values. Thus, if the relative order of the utilities of all points is known, we learn nothing from the DM’s responses;
i.e., the conditional distribution given Aπ remains unchanged if we observe D(n). This property relies heavily on the choice
of the likelihood and does not hold in general for other likelihoods such as the logistic likelihood. We will make use of this
observation in the proof of this lemma.

We first prove the existence of δ. Let Π be the set of all permutations over {1, . . . , |X|} and let π be an arbitrary element of
Π. Define

γ(x, y, π) = E[{f(x)− f(y)}+|Aπ].

We note that E[{f(x)− f(y)}+|Aπ] > 0 if and only if f(x) > f(y) under Aπ .

Let
δ = min

x,y∈X,π∈Π
{γ(x, y, π) : γ(x, y, π) > 0},

We have

E(n)[{f(x)− f(y)}+] =
∑
π∈Π

P(n)(Aπ)E(n)[{f(x)− f(y)}+ | Aπ]

=
∑
π∈Π

P(n)(Aπ)E[{f(x)− f(y)}+ | Aπ]

≥
∑
π∈Π

P(n)(Aπ)1{f(x) > f(y) | Aπ}δ

= δP(n)(f(x) > f(y)),

where the second equation follows from the observation earlier that f and the DM’s responses are conditionally independent
given Aπ and the inequality follows from the observation above that E[{f(x)− f(y)}+|Aπ] > 0 if and only if f(x) > f(y)
under Aπ .

The existence of ∆ can be proved similarly by taking

∆ = max
x,y∈X,π∈Π

{δ(x, y, π) : δ(x, y, π) > 0}.
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B.1 Proof of Theorem 3

The proof of Theorem 3 is achieved via a series of lemmas. We assume that

X(n+1) = (x
(n)
1 , x

(n)
2 ) ∈ argmax

X∈X2

qEUBO(n)(X)

for all n throughout the proofs of these lemmas. We define x∗ = argmaxx∈X f(x), and x(n)
∗ = argmaxx∈X E(n)[f(x)].

Lemma B.3. Let p(n)
∗∗ = P(n)(x

(n)
∗ 6= x∗). Then,

max
X∈X2

qEUBO(n)(X) ≥ max
x∈X

E(n)[f(x)] +
δ

|X| − 1
p

(n)
∗∗ .

Proof. Observe that

max
X∈X2

qEUBO(n)(X) ≥ max
x∈X

qEUBO(n)(x, x
(n)
∗ )

= max
x∈X

E(n)[max{f(x), f(x
(n)
∗ )}]

= max
x∈X

E(n)[f(x
(n)
∗ ) + {f(x)− f(x

(n)
∗ )}+]

= E(n)[f(x
(n)
∗ )] + max

x∈X
E(n)[{f(x)− f(x

(n)
∗ )}+]

≥ max
x∈X

E(n)[f(x)] + max
x∈X

δP(n)(f(x) > f(x
(n)
∗ ))

≥ max
x∈X

E(n)[f(x)] +
δ

|X| − 1

∑
x∈X

P(n)(f(x) > f(x
(n)
∗ ))

≥ max
x∈X

E(n)[f(x)] +
δ

|X| − 1
P(n)(∪x∈X{f(x) > f(x

(n)
∗ )})

= max
x∈X

E(n)[f(x)] +
δ

|X| − 1
P(n)(x

(n)
∗ 6= x∗),

where the second inequality follows from Assumption 2 and the last inequality follows from the union bound.

Lemma B.4. Let p(n)
1 = P(n)(f(x

(n+1)
1 ) > f(x

(n+1)
2 )) and p(n)

2 = P(n)(f(x
(n+1)
2 ) > f(x

(n+1)
1 )). Then,

p
(n)
1 , p

(n)
2 ≥ Cp(n)

∗∗ ,

where C = δ
(|X|−1)∆ .

Proof. We have

qEUBO(n)(X(n+1)) = E(n)[f(x
(n+1)
1 )] + E(n)[{f(x

(n+1)
2 )− f(x

(n+1)
1 )}+]

≤ E(n)[f(x
(n+1)
1 )] + ∆P(n)(f(x

(n+1)
2 ) > f(x

(n+1)
1 ))

≤ max
x∈X

E(n)[f(x)] + ∆P(n)(f(x
(n+1)
2 ) > f(x

(n+1)
1 )),

where the first inequality is again due to Assumption 2. Combining this with Lemma B.2., we get

max
x∈X

E(n)[f(x)] + ∆P(n)(f(x
(n+1)
2 ) > f(x

(n+1)
1 )) ≥ max

x∈X
E(n)[f(x)] +

δ

|X| − 1
p

(n)
∗∗ ;

i.e.,

P(n)(f(x
(n+1)
2 ) > f(x

(n+1)
1 ) ≥ δ

(|X| − 1)∆
p

(n)
∗∗ .

Finally, it follows by symmetry that

P(n)(f(x
(n+1)
1 ) > f(x

(n+1)
2 ) ≥ δ

(|X| − 1)∆
p

(n)
∗∗ ,

which finishes the proof.
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Lemma B.5. Let X denote a generic discrete random vector and Y denote a Bernoulli random variable correlated with X .
Let pX and pY denote the marginal distributions of X and Y , respectively, and pX|Y denote the conditional distribution of
X given Y . Let H(X) and H(X|Y = y) denote the entropy of X and the conditional entropy of X given Y = y; i.e.,

H(X) = −
∑
x

pX(x) log(pX(x)),

and
H(X|Y = y) = −

∑
x

pX|Y (x|y) log(pX|Y (x|y)).

Define q(x) = P(Y = 0|X = x). Then,

−
1∑
y=0

pY (y)H(X|Y = y) = H(X)−

[
h

(∑
x

pX(x)q(x)

)
−
∑
x

pX(x)h(q(x))

]
,

where h(q) = −q log q − (1− q) log(1− q) is the binary entropy function.

Proof. Observe that −
∑
y pY (y)H(X|Y = y) is the conditional entropy of X given Y (see definition 2.10 in Cover

(1999)). By basic information theory results (see equations 2.43 and 2.44 in Cover (1999)) we know that

H(X)−H(X|Y ) = H(Y )−H(Y |X)

Rearranging terms, we obtain
H(X|Y ) = H(X)− (H(Y )−H(Y |X))

Consider the term H(Y )−H(Y |X). We have

P(Y = 0) =
∑
x

pX(x)P(Y = 0|X = x)

=
∑
x

pX(x)q(x).

Moreover, since Y is a Bernoulli random variable, H(Y ) = h(P(Y = 0)).

The second term is

H(Y |X) =
∑
x

pX(x)H(Y |X = x)

=
∑
x

pX(x)h(q(x)).

Hence,
H(Y )−H(Y |X) = h(P(Y = 0))−

∑
x

pX(x)h(q(x)),

which concludes the proof.

Lemma B.6. Enumerate the elements of X as x1, . . . , x|X| and let πf be the random permutation satisfying f(xπf (1)) <

· · · < f(xπf (|X|)). Let p(n)
πf denote the posterior on π given D(n). Then,

E(n)[H(p(n+1)
πf

)] ≤ H(p(n)
πf

)− ϕ(p
(n)
1 )

where the expectation on the left-hand side is over r(n+1), and ϕ(u) = h(au+ (1− a)(1− u))− h(a).
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Proof. Observe that E(n)[H(p(n+1))] = H(p(n) | r(n+1)). Thus, from Lemma B.5 it follows that

E(n)[H(p(n+1))] = H(p(n))−

[
h

(∑
π

p(n)
πf

(π)q(π)

)
−
∑
π

p(n)
πf

(π)h(q(π))

]
,

where q(π) = P(n)(r(n+1) = 1 | π). Thus, it suffices to show that

h

(∑
π

p(n)
πf

(π)q(π)

)
−
∑
π

p(n)
πf

(π)h(q(π)) ≥ ϕ(p
(n)
1 ).

Let Π1 and Π2 be the set of permutations such that f(x
(n)
1 ) < f(x

(n)
2 ) and f(x

(n)
1 ) > f(x

(n)
2 ), respectively. Define

qi =

(∑
π∈Πi

p(n)
πf

(π)q(π)

)
/p

(n)
i

for i = 1, 2. After some algebra we see that

h

(∑
π

p(n)
πf

(π)q(π)

)
−
∑
π

p(n)
πf

(π)h(q(π)) = h(p
(n)
1 q1 + p

(n)
2 q2)− p(n)

1 h(q1)− p(n)
2 h(q2) + p

(n)
1 ψ1 + p

(n)
2 ψ2,

where

ψi = h(qi)
∑
π∈Πi

p(n)
πf

(π)h(q(π))/p
(n)
1

for i = 1, 2. Moreover, since h is concave, ψi ≥ 0 by Jensen’s inequality. Thus,

h

(∑
π

p(n)
πf

(π)q(π)

)
−
∑
π

p(n)
πf

(π)h(q(π)) ≥ h(p
(n)
1 q1 + p

(n)
2 q2)− p(n)

1 h(q1)− p(n)
2 h(q2)

Recall that P(r(X) = argmaxi=1,2 f(xi) | f(X)) ≥ a whenever x1 6= x2 almost surely by Assumption 3. Also recall

that X(n+1) = (x
(n+1)
1 , x

(n+1)
2 ) ∈ argmaxX∈X2 qEUBOn(X). It is not hard to see that we can always choose x(n+1)

1 and
x

(n+1)
2 such that x(n+1)

1 6= x
(n+1)
2 . It follows from this that q(π) ≥ a for π ∈ Π1 and q(π) ≤ 1− a for π ∈ Π2. From the

definition of qi for i = 1, 2, this in turn implies that q1 ≥ a and q2 ≤ 1− a.

Taking the derivative of h(p
(n)
1 q1 + p

(n)
2 q2)− p(n)

1 h(q1)− p(n)
2 h(q2) with respect to q1 and recalling that the derivaitve of h

is decreasing since h is concave, we can see that h(p
(n)
1 q1 +p

(n)
2 q2)−p(n)

1 h(q1)−p(n)
2 h(q2) is minimal when q1 = a under

the constraint q1 ≥ a. Similarly, we can see that h(p
(n)
1 q1 + p

(n)
2 q2)− p(n)

1 h(q1)− p(n)
2 h(q2) is minimal when q2 = 1− a

under the constraint q2 ≤ 1− a. Hence,

h

(∑
π

p(n)
πf

(π)q(π)

)
−
∑
π

p(n)
πf

(π)h(q(π)) ≥ h(p
(n)
1 a+ p

(n)
2 (1− a))− p(n)

1 h(a)− p(n)
2 h(1− a)

ϕ(p
(n)
1 ),

where the last equation holds because p(n)
2 = 1− p(n)

1 and h(a) = h(1− a). This concludes the proof.

Lemma B.7. ϕ(u) ≥ 2(h(1/2)− h(a))u for u ∈ [0, 1/2].

Proof. Note that ϕ is concave in [0, 1]. Applying Jensen’s inequality we obtain

ϕ((1− 2u)0 + (2u)(1/2)) ≥ (1− 2u)ϕ(0) + 2uϕ(1/2);

i.e.,

ϕ(u) ≥ 2(h(1/2)− h(a))u.
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Lemma B.8. Let R(n) = 2(h(1/2)− h(a))p
(n)
∗∗ C. Then,

E(n)[H(p(n+1))] ≤ H(p(n))−R(n).

Proof. From Lemma B.4 we know that p(n)
1 , p

(n)
2 ≥ p(n)

∗∗ C. Since p(n)
1 + p

(n)
2 = 1, it follows that

0 ≤ p(n)
∗∗ C ≤ min{p(n)

1 , p
(n)
2 } ≤ 1/2.

Now observe that the function ϕ is increasing in [0, 1/2] and symmetric around 1/2. Thus,

ϕ(p
(n)
∗∗ C) ≤ ϕ(min{p(n)

1 , p
(n)
2 }) = ϕ(p

(n)
1 ).

Finally,

E(n)[H(p(n+1))] ≤ H(p(n))− ϕ(p
(n)
1 )

≤ H(p(n))− ϕ(p
(n)
∗∗ C)

≤ H(p(n))− 2(h(1/2)− h(a))p
(n)
∗∗ C,

where the first line comes from Lemma B.6, the second line comes from the above analysis, and the third line is a consequence
of Lemma B.7.

We are now in position to prove Theorem 3.
Theorem B.1 (Theorem 3). Suppose that Assumptions 1-3 are satisfied and X(n+1) ∈ argmaxX∈Xq qEUBO(n)(X) for
all n. Then, E[f(x∗)− f(x

(n)
∗ )] = o(1/n).

Proof. Consider the stochastic processes {Z(n)}∞n=0 defined by

Z(n) = H(p(n)) +

n−1∑
m=0

R(m), n ≥ 0.

Observe that Z(n) is non-negative for all n. Moreover,

E(n)[Z(n+1)] = E(n)[H(p(n+1))] +

n∑
m=0

R(n)

≤ H(p(n))−R(n) +

n∑
m=0

R(m)

= H(p(n)) +

n−1∑
m=0

R(m)

= Z(n),

where the inequality above follows from Lemma B.8. Thus, {Z(n)}∞n=0 is a non-negative supermartingale. By Doob’s
martingale convergence theorem, {Z(n)}∞n=0 converges almost surely to a random variable with finite expectation. This in
turn implies that

∑∞
n=0 E[R(n)] <∞. Since R(n) = 2(h(1/2)− h(a))p

(n)
∗∗ C, it follows that

∑∞
n=0 E[p

(n)
∗∗ ] <∞. Recall

that p(n)
∗∗ = P(n)(x

(n)
∗ 6= x∗). By the law of the iterated expectation we obtain E[p

(n)
∗∗ ] = P(x

(n)
∗ 6= x∗). Hence, we have

shown that
∑∞
n=0 P(x

(n)
∗ 6= x∗) <∞. We deduce from this that P(x

(n)
∗ 6= x∗) = o(1/n).

Finally,

E[f(x∗)− f(x
(n)
∗ )] = E[{f(x∗)− f(x

(n)
∗ )}+]

≤ ∆P(f(x∗) > f(x
(n)
∗ ))

= ∆P(x
(n)
∗ 6= x∗)

= o(1/n),

where the first and third lines hold by definition of x∗, and the second line follows from Assumption 2.
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B.2 Proof of Theorem 4

Theorem B.2 (Theorem 4). There exists a problem instance (i.e., X and Bayesian prior distribution over f ) satisfying
Assumptions 1-3 such that if X(n+1) ∈ argmaxX∈Xq qEI(n)(X) for all n, then E[f(x∗)− f(x̂

(n)
∗ )] ≥ R for all n, for a

constant R > 0.

Proof. Let X = {1, 2, 3, 4} and consider the functions fi : X→ R, for i = 1, 2, 3, 4, given by fi(1) = −1 and fi(2) = 0
for all i, and

f1(x) =

{
1, x = 3
1
2 , x = 4

, f2(x) =

{
1
2 , x = 3

1, x = 4
, f3(x) =

{
− 1

2 , x = 3

−1, x = 4
, f4(x) =

{
−1, x = 3

− 1
2 , x = 4

.

Let p be a number with 0 < p < 1/3 and set q = 1− p. We consider a prior distribution on f with support {fi}4i=1 such that

pi = P(f = fi) =

{
p/2, i = 1, 2,

q/2, i = 3, 4.

We also assume the DM’s response likelihood is given by P(r(X) = 1 | f(x1) > f(x2)) = a for some a such that
1/2 < a < 1,

Let D(n) denote the set of observations up to time n and let p(n)
i = P(f = fi | D(n)) for i = 1, 2, 3, 4. We let the initial

data set be D(0) = {(X(0), r(0))}, where X(0) = (1, 2). We will prove that the following statements are true for all n ≥ 0.

1. p(n)
i > 0 for i = 1, 2, 3, 4.

2. p(n)
1 < 1

2p
(n)
3 and p(n)

2 < 1
2p

(n)
4 .

3. argmaxx∈X E(n)[f(x)] = {2}.

4. argmaxX∈X2 qEI(n)(X) = {(3, 4)}.

We prove this by induction over n. We begin by proving this for n = 0. Since fi(1) < fi(2) for all i, the posterior
distribution on f given D(0) remains the same as the prior; i.e., p(0)

i = pi for i = 1, 2, 3, 4. Using this, statements 1 and 2
can be easily verified. Now note that E(0)[f(1)] = −1, E(0)[f(2)] = 0, and E(0)[f(3)] = E(0)[f(4)] = 3

2 (p− q). Since
p < q, it follows that argmaxx∈X E(n)[f(x)] = {2}; i.e., statement 3 holds. Finally, since maxx∈{1,2}E

(0)[f(x)] = 0, the
qEI acquisition function at time n = 0 is given by qEI(0)(X) = E(0)[{max{f(x1), f(x2)}}+]. A direct calculation can
now be performed to verify that statement 4 holds. This completes the base case.

Now suppose statements 1-4 hold for some n ≥ 0. Since X(n+1) = (3, 4), the posterior distribution on f given D(n+1) is
given by

p
(n+1)
i ∝

{
p

(n)
i `, i = 1, 3,

p
(n)
i (1− `), i = 2, 4,

where

` = aI{r(n+1) = 1}+ (1− a)I{r(n+1) = 2}.

Observe that 0 < ` < 1 since 0 < a < 1. Thus, ` > 0 and 1− ` > 0. Since p(n)
i > 0 by the induction hypothesis, it follows

from this that p(n+1)
i > 0 for i = 1, 2, 3, 4. Moreover, since p(n+1)

i ∝ p(n)
i ` for i = 1, 3 and p(n)

1 < 1
2p

(n)
3 by the induction

hypothesis, it follows that p(n+1)
1 < 1

2p
(n+1)
3 . Similarly, p(n+1)

2 < 1
2p

(n+1)
4 . Thus, statements 1 and 2 hold at time n+ 1.
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Now observe that

E(n+1)[f(3)] = p
(n+1)
1 +

1

2
p

(n+1)
2 − 1

2
p

(n+1)
3 − p(n+1)

4

=

(
p

(n+1)
1 − 1

2
p

(n+1)
3

)
+

(
1

2
p

(n+1)
2 − p(n+1)

4

)
≤
(
p

(n+1)
1 − 1

2
p

(n+1)
3

)
+

(
p

(n+1)
2 − 1

2
p

(n+1)
4

)
≤ 0,

where the last inequality holds since p(n+1)
1 < 1

2p
(n+1)
3 and p(n+1)

2 < 1
2p

(n+1)
4 . Similarly, we see that E(n+1)[f(4)] ≤ 0.

Since E(n+1)[f(1)] = −1 and E(n+1)[f(2)] = 0, it follows that argmaxx∈X E(n+1)[f(x)] = {2}; i.e., statement 3 holds
at time n+ 1.

Since maxx∈X E(0)[f(x)] = 0, the qEI acquisition function at time n + 1 is given by qEI(n+1)(X) =
E(n+1)[{max{f(x1), f(x2)}}+]. Since f(1) ≤ f(x) almost surely under the prior for all x ∈ X, there is always a
maximizer of qEI that does not contain 1. Thus, to find the maximizer of qEI, it suffices to analyse its value at the pairs
(2, 3), (3, 4) and (4, 2). We have

qEI(n+1)(2, 3) = p
(n+1)
1 + 1/2p

(n+1)
2 ,

qEI(n+1)(3, 4) = p
(n+1)
1 + p

(n+1)
2

and
qEI(n+1)(4, 2) = 1/2p

(n+1)
1 + p

(n+1)
2 .

Since p(n+1)
1 > 0 and p(n+1)

2 > 0, it follows that argmaxX∈X2 qEI(n+1)(X) = {(3, 4)}, which concludes the proof by
induction.

Finally, since argmaxx∈X E(n)[f(x)] = {2} for all n, the Bayesian simple regret of qEI is given by

E [f(x∗)− f(2)] =
∑
i=1

pi

(
max
x∈X

fi(x)− fi(2)

)
= p

for all n.

C ADDITIONAL EMPIRICAL RESULTS

Besides the experiments we present in the main paper, we additionally present experimental results with q = 4 vs q = 6 and
investigate different acquisition functions’ performance under various noise levels for q = 2 case.

C.1 Results for q = 4 vs. q = 6

Figure 6 shows the experiment results for the best performing three acquisition (qTS, qEI, and qEUBO) functions with
q = 4 and q = 6 over 150 queries. As discussed in the paper, q = 6 offers little improvement over q = 4 for all acquisition
functions.
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Figure 6: log10(optimum value - objective value at the maximizer of the posterior mean) using moderate logistic noise and
q = 4 and q = 6 alternatives per DM query.

C.2 Experiments with Varying Levels of Noise

Figure 7 shows the results of three test problems (Ackley, Animation, and Sushi) by injecting varying levels of comparison
noise. Left, center, and right columns show the results for low, middle, and high noise levels respectively. The noise levels
are chosen so that the DM makes a comparison mistake 10, 20, and 30% of the time on average when asked to compare
random pairs of points among those with the top 1% function values within the optimization domain X under a logistic
likelihood. Those noise levels are estimated over a large grid of random points in X.

For experiments with lower noise, the performance gap between qEUBO and other baseline methods is most pronounced.
This is consistent with Theorem 2, which shows that qEUBO is a better approximation of the one-step Bayes optimal policy
for lower noise levels. With increasing noise, the performance of all methods decreases. However, we consistently observe
superior performance of qEUBO compared to other baseline methods. These results are averaged over 50 replications for
Ackley, and 100 replications for Animation and Sushi.
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Figure 7: log10(optimum value - objective value at the maximizer of the posterior mean) with q = 2 alternatives per DM
query and varying levels of noise. Left, center, and right columns show the results for three of our experiments with low,
middle, and high noise, respectively.
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