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Abstract

In experimentation at Internet firms, it is common to make product decisions based on
multiple competing or complementary objectives where the experimenter needs to select the
most “favorable” option with the highest utility. However, despite the prevalence of this
decision problem, such multi-objective decisions are often made in arguably sub-optimal
ways. In this paper, we propose a framework that enables us to suggest the configuration
in a potentially large action space that is expected to maximize the experimenter’s utility
function. We demonstrate the efficacy of preference learning and our proposed framework
with two user studies conducted at a large Internet firm. We show how the learned preference
models can accurately recover machine learning engineers’ preferences in the user study
and are most useful when trained on near-optimal regions where real-world tradeoffs are
expected to happen the most.

Keywords: Preference Learning, Multi-Objective Decision Making, Online Experimenta-
tion, Internet Experimentation

1. Introduction

Many real-world problems involve making decisions based on multiple objectives, either
competing or complementary. For example, adaptive video playback control policies might
be tuned to optimize the resolution, playback start time, and buffering periods of delivered
video (Yin et al., 2015). While it is relatively straightforward for Internet firms to conduct
large experiments which can determine the impact of an intervention on multiple outcomes,
it can often be less easy to make decisions involving multiple apparent trade-offs. In these
circumstances, a common approach is to produce a single objective function that combines
the objective. However, it is not obvious what the functional form of such preferences should
take. Moreover, it could be the case that the true objective function we care about cannot
be adequately articulated by any decision maker, but can only be noisily expressed even by
the experimenter herself. Nevertheless, in this case, the experimenter is often able to make
comparisons between pairs of alternative possible outcomes (Tesauro, 1989; Sirakaya et al.,
2004), and this information can still be used to learn a model of the experimenter’s intrinsic
utility function.

In this work, we learn and characterize the utility functions of machine learning engineers
who wish to optimize a recommender system at Instagram, using a preference model learned
with pairwise comparisons (Fürnkranz and Hüllermeier, 2003; Chu and Ghahramani, 2005;
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Brochu et al., 2010). Prior literature has focused on modeling the utility function (Chu
and Ghahramani, 2005; Brochu et al., 2008, 2010; Dewancker et al., 2016) or designing
the preference elicitation query (Zintgraf et al., 2018), with performance being assessed
with known synthetic utility functions in simulation settings. Here, we are concerned with
determining real-world experimenters’ utility functions, and on implementing the restriction
that the outcomes considered must actually be achievable.

At Internet firms, Bayesian optimization (BO) has been proven to be an effective method
for optimizing many real-world systems. For example, Letham et al. (2019) used BO to
optimize ranking system and compiler flags with noisy observations and noisy constraints;
Letham and Bakshy (2019) leveraged BO to tune Facebook News Feed ranking system;
and Mao et al. (2019) employed BO for video playback control and reward shaping in
reinforcement learning. Preferential learning has also been explored under BO (yet mostly
simulated) settings (González et al., 2017; Houlsby et al., 2011; Astudillo and Frazier, 2019),
Among previous work, Astudillo and Frazier (2019) presented an algorithm for multi-objective
Bayesian optimization using Thompson sampling with a linear utility model. Although our
approach is similar, in that we use Thompson sampling to account for uncertainty in the
learned utility function, we distinguish our work from previous literature by investigating the
applicability of preference models, both linear and the more expressive Gaussian processes,
to the setting of Internet experimentation.

Building on past work from preference learning and Bayesian optimization, we propose
a framework that not only enables us to learn the experimenter’s intrinsic utility function
over the achievable outcome space, but also suggests the configuration in a large action
space that is expected to maximize the experimenter’s utility function. We then carry out
a user study to evaluate preference models and characterize real user utility functions in
this setting. From the user study results, we discover that preference models trained on
the near-optimal regions can perform and generalize well. We note that while the primary
goal of this work is to understand the extent to which real-world experimenter’s goals can
be efficiently learned and used in optimization, the framework can be trivially modified to
perform Bayesian optimization with interactive preference learning.

2. Method

In this section, we first describe our empirical setting then outline our proposed method for
performing preference learning with both achievable and near-optimal outcomes.

2.1 Multi-Objective Decision Making for Internet Experiments

The experimenter starts by picking a set of design points (also referred to as interventions or
actions) X = {x1, ..., xn | x ∈ Rk}, which describe parameterized experimental treatments.
The experimenter then launches an experiment with these design points and observes the
corresponding outcomes (or objectives) Y = {y1, ..., yn | y ∈ Rd}.

Upon observing these outcomes, the experimenter needs to evaluate the desirability of
the outcomes for each design point, either to guide additional sequential experimentation or
to decide on which intervention should be applied in production. If there is a single scalar
outcome, doing this could be as simple as choosing the design point with the optimal value
of that outcome. However when there are multiple outcomes, there need not be a single
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Pareto-optimal choice. In this case the multiple outcomes need to be projected to a single
value by means of a utility function.

One popular way to do this is through scalarization of the outcomes (Roijers et al., 2013;
Clemen and Reilly, 2013; Fürnkranz and Hüllermeier, 2010). Here, the experimenter is
assumed to have a particular intrinsic utility function U : Rd 7→ R that will map the outcome
to a single scalar value representing the experimenter-specific utility on a given outcome
y. Previous work on preference elicitation has suggested that this function can be learned
rather than assumed, by presenting experimenters with pairwise choices between possible
outcomes. Given a set of outcome instances Y and m pairwise comparisons provided by the
experimenter D = {v1 � u1, ..., vm � um}, where vj � uj indicates the experimenter prefers
input yvj over yuj , we are able to model the experimenter’s intrinsic utility function. By
assuming Gaussian noise on the experimenter’s responses, we can describe the likelihood of
a pairwise comparison vj � uj as:

P (vj � uj | U(yvj ),U(yuj )) =

∫ ∫
1U(yvj )+δvj ≥ U(yuj )+δujϕσ2(δvj )ϕσ2(δuj )dδvjdδuj (1)

= Φ

(U(yvj )− U(yuj )√
2σ

)
(2)

where ϕσ2(·) is Gaussian PDF with mean 0 and variance σ2 and Φ is the standard Gaussian
CDF. Following previous work (Chu and Ghahramani, 2005; Brochu et al., 2008, 2010), we
implement a Gaussian process (GP) utility model using Laplace approximation (MacKay,
1996) with a RBF ARD (Neal, 2012; MacKay, 1996) kernel.

2.2 Preference Learning in Achievable Near-optimal Outcome Regions

Algorithm 1: Sampling achievable and near-optimal outcomes

input :Historical experiment design points and outcomes X ,Y;
User pairwise comparisons on historical experiment outcomes D;
The number of points for each response surface sample batch Nbatch;
Total number of candidate points to be selected N ;

output :Candidate set S
Train response surface model MRSM with (X ,Y);
Train Bayesian preference model Mpref with (Y,D);
Candidate set S ← ∅;
for i = 1 to N do

dp← Nbatch random points in the same space as X ;
outcome sample←MRSM .posterior(dp).sample();
utility sample←Mpref .posterior(outcome sample).sample();
j ← argmax(utility sample);
S.add(outcome samplej)

end
return S

Many existing approaches to preference elicitation operate in (or assume) situations
where every point in outcome space is achievable. However, this may not be true in practice —
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Figure 1: Preference elicitation user interface

as confirmed by feedback from the user study, which suggested that the random comparisons
would rarely happen in reality because both outcomes were bad. Hence, in the rest of
this subsection, we describe a framework for preference elicitation for real-world Internet
experimentation which allows us to generate pairwise comparison queries about outcomes
that are both achievable and relatively optimal. The algorithm is outlined in Algorithm 1.

In this framework, both our interventions and preference are parameterized, and therefore
the framework uses two models: a response surface model (MRSM ) which maps design
points to outcomes and a Bayesian preference model (Mpref ) which maps outcomes to
a scalar utility value. The response surface model is trained on historical experiments’
design points and corresponding outcomes; the preference model can be trained with user
responses on a set of (either randomly or strategically selected) outcomes. We can then
execute Thompson sampling on the predicted utility posterior obtained from Mpref within
the achievable outcome space provided by the response surface model MRSM . We note that
we could easily perform interactive preferential Bayesian optimization with this framework
by refitting preference model and regenerating the outcome samples after each round of
user preference elicitation query. We implemented both the response surface model and
the pairwise preferential model using BoTorch (Balandat et al., 2019). The linear model is
implemented using Stan (Carpenter et al., 2017).

3. Experiments

In this section, we describe two user studies we run to evaluate the efficacy of preference
learning models as well as our proposed framework in Internet experimentation setting.

3.1 User Studies

Study 1: Random Historical Outcomes The first research question we attempt to
arbitrate is whether preference models can fit real-world utility functions from Internet
experimentation at all given that we never explicitly observe the true underlying utility
values. We select 4 historical Internet experiments conducted by a recommender system
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team at Instagram, each consisting of between 32 and 64 exploratory random design points.
Each design point has 5 corresponding outcomes: metrics which are relevant to the success
of the intervention. During the user study, we asked one machine learning engineer from
Instagram who often makes experiment launch decisions to answer a series of pairwise
comparison queries. In these queries, we show side-by-side two sets of randomly selected
historical experiment outcomes, with the mean and confidence intervals for each metric
(Figure 1).

Unlike in a simulation setting, we do not have access to the underlying true utility
function and therefore cannot use model performance measures such as correlation which
relies on knowing the true model (Dewancker et al., 2016). We instead measure the model’s
performance by examining how often it can recover the experimenter’s stated preference using
leave-one-out cross-validation on the collected pairwise comparisons. We observe that both
the GP and linear models agree with 90% of experimenter’s responses for randomly-sampled
design points, indicating an overall good fit for the utility function. This similar performance
suggests that the a linear (or weighted sum) utility function might be reasonable model for
real-world utility functions.

Study 2: Near-Optimal Simulated Outcomes One piece of verbal feedback we heard
during the the first user study was that many of the randomly selected design points almost
produced undesirable outcomes, for which a decision maker would never have to choose
between in practice. This not only makes the task difficult and possibly irrelevant, but also
led us to explore how the learned preference function may perform when all design points
are sampled from a near-optimal region of the design space, where we expect the decision
tradeoffs to occur more often in practice.

The setup of the second user study is the same as Study 1, but instead of requesting the
machine learning engineer to compare random outcome pairs, we ask the engineer to compare
randomly selected pairs from a near-optimal outcome set generated with Algorithm 1. The
preference model is pre-trained using data collected in study 1. X and Y for training
those models are from the same set of historical experiments as in the first user study. D
for training the preference model Mpref is also collected from the first user study. We
generate 50 near-optimal outcomes for each of the 4 historical experiments, and collect
119 comparisons between pairs of these outcomes. Similar to Study 1, we evaluated the
performance using leave-one-out cross-validation on this near-optimal outcome dataset.
Although the overall accuracy is high across all dataset-model combination, there starts to
show a gap between the linear model’s accuracy (82%) and GP’s accuracy (87%), implying
that the utility function is more properly modelled by a non-linear GP model in this region.

3.2 Results and Discussion

The user study results show that although the linear model can fit the overall utility function
shape fairly well, the more expressive GP model is able to model the tradeoffs better,
especially for the near-optimal outcomes. To further investigate the non-linearity of the
utility function in the near-optimal region and to mitigate the effect of between-subject
difference in utility function shape, we compare the differences in normalized predicted utility
given by GP and the linear model when training the model using only either the random
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Training-Evaluating dataset R-R R-O O-O O-R

Kendall-Tau Rank Correlation 0.966 0.920 0.799 0.704

Mean Squared Difference 0.0001 0.0001 0.0210 0.0380

Table 1: Predicted utility similarity between normalized GP utility and linear model utility.
Similarity is measured using both Kendall-Tau rank correlation (the higher the more similar)
and the mean squared difference (the smaller the more similar). The first row in the table
indicates on which dataset is the preference model being trained and evaluated on. For
example, R-O suggests models are trained on random outcome dataset (R) and evaluated
on the near-optimal outcome dataset (O).

outcome data or the near-optimal region data 1 (Table 1). When the models are trained
on the random outcome dataset, we observe a high rank correlation and low mean squared
difference between the predictions of the GP and linear model, regardless of whether utility
being measured using the same random outcome dataset (R-R) or using the near-optimal
outcome dataset (R-O). This suggests that the learned utility surface for the GP is linear
overall, despite the fact that it uses a flexible RBF ARD kernel. On the other hand, when
the GP model is trained using the near-optimal outcome dataset (O-R and O-O), the GP’s
behavior starts to deviate from the linear model, possibly because it learns to capture the
non-linear shape along the Pareto front near the optimal region.

We also note that the high leave-one-out cross-validation accuracy only reflects the model
can fit the given dataset well, but does not tell the full story of how well the learned utility
surface can generalize to other datasets. To assess models’ potential generalizability, we
examine the cross-dataset test accuracy. Specifically, we evaluate the accuracy when we train
the model on the random outcome dataset and evaluate on near-optimal outcome dataset,
and the reverse scenario when we train on near-optimal outcome dataset and evaluate on
the random outcome dataset. When models are trained using comparisons of the random
outcomes, both models perform slightly better than chance. In contrast, when trained on
near-optimal dataset, both models perform significantly better than chance on the random
outcome dataset, and the GP outperforms linear model in this case. This result suggests
that it is important to focus preference learning on the most optimal regions of the design
space.

In this work, we propose a framework to efficiently learn a preference model in Internet
experimentation settings. We then examine the efficacy of the proposed framework as well as
the characteristics of real-world Internet experimenters’ utility functions through user studies.
We show that pure exploration using random comparison is not necessarily the optimal
strategy to learn a good utility model. This work is among the first study to examine multi-
objective optimization with preference learning for real Internet experimenters and tasks.
We hope this study could provide insights for future researchers on better incorporating
human decision preferences in Bayesian optimization as well as Internet experimentation.

1. We limit the training data size to be the smallest dataset size in all cases during our cross-dataset
performance evaluation
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Javier González, Zhenwen Dai, Andreas Damianou, and Neil D Lawrence. Preferential
Bayesian optimization. In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1282–1291, International Convention Centre, Sydney, Australia,
2017. PMLR.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active
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